14/7/1438H
Exam 1
90 minutes [25 marks]

Student Section: \square
\square
Student ID:
Serial number: \square

Q1: Mark True (T) or False (F) and justify your answers:
(1) [] If one row in an echelon form of an augmented matrix is $\left[\begin{array}{lllll}0 & 0 & 0 & 5 & 0\end{array}\right]$, then the associated linear system is inconsistent.
(2) [] If A is $n \times n$ matrix, then $A-A^{T}$ is skew-symmetric.
(3) $[\quad]$ If $A=\left[\begin{array}{cc}2 & -1 \\ 3 & 0\end{array}\right]$, then $A^{2}=\left[\begin{array}{ll}4 & 1 \\ 9 & 0\end{array}\right]$
(4) [] If $A A^{T}$ is singular matrix, then A is also singular.
(5) [] If A and B are $n \times n$ matrices such that A is an invertible matrix, then for any matrix $B ;\left|A^{-1} B A\right|=|B|$.

Q2: Fill in the blanks:
(1) If A is 3×3 matrix such that $|A|=9$, then $\left|3 A^{-1}\right|=\ldots$
(2) If $A\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, then $A=\left[\begin{array}{ll}\cdots & \cdots \\ \cdots & \cdots\end{array}\right]$
(3) If $\left|\begin{array}{ccc}a_{11} & 2 & 1 \\ 0 & a_{22} & -1 \\ 0 & 0 & 5\end{array}\right|=15$, then $\mathrm{a}_{11}=\ldots$ and $a_{22}=\ldots$
(4) If $A=\left[a_{i j}\right]$ is $n \times n$ skew-symmetric matrix, then $a_{i i}=\ldots \forall i=1,2, \ldots, n$
(5) The system $\begin{gathered}x+y-2 z=1 \\ 3 x+3 y-6 z=2\end{gathered}$ has \ldots... solution(s)
(6) If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & -1 & 1 \\ 3 & -2 & -20\end{array}\right]$, then $\operatorname{Trace}(A)=\ldots$
(7) $A=\left[\begin{array}{cc}k-1 & 2 \\ 4 & k+1\end{array}\right]$ is singular if $k=\ldots$

Q3: For what values of k the following system has:
[2.5 marks]
(a) No solution.
(b) An infinite number of solutions.
(c) Exactly one solution.

$$
\begin{aligned}
& x+2 y-z=3 \\
& -x-y+z=2 \\
& -x+y+z=k
\end{aligned}
$$

Q4: Let A be an investable $n \times n$ matrix, prove that:
(a) $A B=A C \Rightarrow B=C$
(b) $\left|A^{-1}\right|=\frac{1}{|A|}$
(c) If A is orthogonal, then $|A|= \pm 1$

Q5: Verify that the equation
$\left|\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right|=(a-b)(b-c)(c-a)$

Q6: Use Cramer's rule to solve the system,
[2.5 marks]

$$
\begin{gathered}
5 x+4 y=2 \\
-x+y=-22
\end{gathered}
$$

Q7: Find A^{-1} by using the adjoint matrix, where

$$
A=\left[\begin{array}{ccc}
4 & -2 & 3 \\
2 & 2 & 5 \\
8 & -5 & -2
\end{array}\right]
$$

