

Maths Department	Math 241		7 pages	
14/7/1438H	Exam 1	90 minut	æs [25 marks]	
Name:		Student ID:		
Student Section:		Serial number:		
Marks: 25				

- Q1: Mark True (T) or False (F) and justify your answers: [5 marks]
- (1) [] If one row in an echelon form of an augmented matrix is $\begin{bmatrix} 0 & 0 & 0 & 5 & 0 \end{bmatrix}$, then the associated linear system is inconsistent.

(2) [] If A is $n \times n$ matrix, then $A - A^T$ is skew-symmetric.

(3) [] If
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix}$$
, then $A^2 = \begin{bmatrix} 4 & 1 \\ 9 & 0 \end{bmatrix}$

(4) [] If AA^T is singular matrix, then A is also singular.

(5) [] If A and B are $n \times n$ matrices such that A is an invertible matrix, then for any matrix B; $|A^{-1}BA| = |B|$.

Q2: Fill in the blanks:

[5 marks]

(1) If A is 3×3 matrix such that |A| = 9, then $|3A^{-1}| = \dots$

(2) If
$$A\begin{bmatrix}3&2\\7&5\end{bmatrix} = \begin{bmatrix}1&0\\0&1\end{bmatrix}$$
, then $A = \begin{bmatrix}\dots&\dots\\\dots&\dots\end{bmatrix}$

(3) If
$$\begin{vmatrix} a_{11} & 2 & 1 \\ 0 & a_{22} & -1 \\ 0 & 0 & 5 \end{vmatrix} = 15$$
, then $a_{11} = \dots$ and $a_{22} = \dots$

(4) If $A = [a_{ij}]$ is $n \times n$ skew-symmetric matrix, then $a_{ii} = \dots \forall i = 1, 2, \dots, n$

(5) The system $\begin{array}{c} x+y-2z=1\\ 3x+3y-6z=2 \end{array}$ has solution(s)

(6) If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \\ 3 & -2 & -20 \end{bmatrix}$$
, then $Trace(A) = \dots$

(7)
$$A = \begin{bmatrix} k-1 & 2 \\ 4 & k+1 \end{bmatrix}$$
 is singular if $k = \dots$

Q3: For what values of k the following system has:

- (a) No solution.
- (b) An infinite number of solutions.
- (c) Exactly one solution.

$$x + 2y - z = 3$$
$$-x - y + z = 2$$
$$-x + y + z = k$$

[2.5 marks]

Q4: Let A be an investable $n \times n$ matrix, prove that:

(a) $AB = AC \Rightarrow B = C$

(b)
$$|A^{-1}| = \frac{1}{|A|}$$

(c) If A is orthogonal, then $|A| = \pm 1$

[4.5 marks]

Q5: Verify that the equation |

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$

 $\mathbf{Q6:} \ \mathrm{Use \ Cramer's \ rule \ to \ solve \ the \ system,}$

5x + 4y = 2

-x+y = -22

[2.5 marks]

[2.5 marks]

Q7:	Q7: Find A^{-1} by using the adjoint matrix, where						
		4	-2	3			
	A =	2	2	5			
		8	-5	-2			